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THE GENERATION OF WAVES IN AN INFINITE ELASTIC SOLID
BY VARIABLE BODY FORCES

By G. EASON,* J. FULTONYt anp I. N. SNEDDON*

(Communicated by L. Rosenhead, F.R.S.—Received 24 February 1955)
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This paper is concerned with the determination of the distribution of stress in an infinite elastic
solid when time-dependent body forces act upon certain regions of the solid. It is assumed through-
out that the strains are small. In §2 a general solution of the equations of motion for any distribu-
tion of body forces is derived by the use of four-dimensional Fourier transforms, and from that is
derived the general solution for an isotropic solid (§3). From the latter solution are deduced the
general solution of the statical problem (§4) and the two-dimensional problem (§5). The solution
of the equations of motion in the case in which the distribution of body forces is symmetrical
about an axis is derived in §6. '

The remainder of the paper consists in deducing the solution of special problems from these
general solutions. In §§7 to 13 some typical two-dimensional problems are considered and exact
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576 G. EASON, J. FULTON AND I. N. SNEDDON ON THE

analytical expressions found for the components of the stress tensor. In §§14 to 16 examples are
given of the use of the general non-symmetrical three-dimensional solution derived in §3, and in
§§17 to 19 examples are given to illustrate the use of the general solution of the axially symmetrical
problem. A certain amount of numerical work (presented in graphical form) is quoted to give
some idea of the physical nature of the solutions.

1. INTRODUCTION

The problem of calculating the components of the stress tensor at a point in an elastic solid,
when it is deformed by the application of surface tractions which vary with the time, is
of considerable importance in soil mechanics, in the theory of foundations and in other
branches of applied mathematics. There has been extensive discussion of the corresponding
statical problems, but it is only recently (Sneddon 1951, pp. 444-9; 1954) that attempts
have been made to study dynamical problems of this type in a systematic way. Special
problems have been solved by Lamb (1904), Nakano (1925), Smirnov & Sobolov (1932),
Cagniard (1939), Sneddon (1952), Dix (1954) and Pinney (1954) but they do not contribute
much to a general theory.

There is a similar boundary-value problem in the case in which the elastic solid is de-
formed by the action of external body forces. The solution of a problem of this kind when the
surfaces of the elastic solid are free from stress is of great importance in the theory of seismo-
logy. Statical solutions of problems of this type have been derived by various authors
(Mindlin 1936; Dean, Parsons & Sneddon 1944; Sneddon 1944, 1951, chaps. 9 and 10),
and recently Lapwood (1949) has derived solutions for the deformation of a semi-infinite
elastic solid by body forces which vary with the time.

The present paper is the first of a series giving detailed solutions of the problems (of both
the above types) discussed by Sneddon in his Palermo lecture (Sneddon 1954). It is con-
cerned solely with the determination of the distribution of stress in an infinite elastic solid
when time-dependent body forces act on certain regions of the solid. The strains are assumed
to be infinitesimal so that the equations of the classical theory of elasticity (Green & Zerna
1954, chap. v), are applicable. In §2 a general solution of the equations of motion appro-
priate to any distribution of body forces is derived by the use of four-dimensional Fourier
transforms. From that solution is derived the general solution for an isotropic solid (§3).
In §§4 and 5 the general solutions for the statical problem and for the two-dimensional
problem for an isotropic solid are deduced from the solution of § 3. The solution of the
equations of motion in the case in which the distribution of body forces possesses axial
symmetry is obtained in § 6 by means of integral transforms whose kernels are of the form

_7’_ i(§z+wT)
(&) e

with v = 0 or 1. :

The remainder of the paper consists in deducing the solution of special problems from the
general solutions stated in §§8 to 6. In §§7 to 13 some typical two-dimensional problems
are considered and exact analytical expressions found for the components of the stress
tensor. A certain amount of computational work has been done on the basis of these solu-
tions and the results presented graphically in order to give some idea of the nature of the
solutions, It was thought to be unprofitable to give extensive tables of numerical values of
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GENERATION OF WAVES IN SOLIDS 577

the components of the stress tensor, since, in most cases, analytical expressions are given
for these quantities, and it is a simple matter to calculate them if that should prove to be
necessary. In many cases, too, it is difficult to see how the solutions as they stand can be
applied to a practical engineering problem. A body force concentrated at a point and
moving with uniform velocity through an infinite solid is not easy to envisage physically.
On the other hand, the solution corresponding to such a body force may be of value in the
construction of the solution of more complicated (and physically realizable) problems in
much the same way as solutions corresponding to moving point charges are of value in
electrodynamics. In§§ 14 to 16, examples are given of the use of the general non-symmetrical
three-dimensional solution derived in § 3. In a similar way §§ 17 to 19 illustrate the general
theory developed in § 6.

I. GENERAL THEORY

2. THE GENERAL SOLUTION OF THE EQUATIONS OF MOTION

We shall consider the distribution of stress in an infinite elastic medium deformed by the
action of body forces which may vary with time and which are applied to certain specified
regions of the medium. Ifwe describe the position of a point in the solid by three rectangular
co-ordinates x;, x,, ¥; and if 727 denotes the stress tensor, then, provided the solid is homo-
geneous and of density p, we may write the equations of motion in the form

HpF =gt (p=1,2,3),

where (F',F?, F?) denote the components of the body force at the point (xy, x,, %3). The
acceleration of an infinitesimal element centred at this point is denoted by the vector
(fL f2,/%). If we introduce a displacement vector with components (v!,22,¢%) at such a
typical point we have L b0
= =055
J! ot or?’

where ¢ denotes the time, ¢ is some characteristic velocity, and 7 = ¢t is a space-like co-

ordinate determined by the time. The equations of motion may therefore be written in the

form 92
: v?

T{)Z—I‘pr:pCZ"a*ﬁ. (2'1)

In the general case of a homogeneous solid whose elastic properties do not vary with the
time the relation between the components of the stress tensor and of the displacement vector
may be written in the form

T8 = JEM (v, 5+ y,),s (2-2)
where the quantities £#4"* are constants which are independent of x,, x,, x; and 7.

The problem we shall consider here is that of solving the set of equations (2:1) and (2-2)
when the mode of variation of the components F? throughout the solid is prescribed. To
solve these equations we introduce the four-dimensional Fourier transform of each of the
components of stress and displacement. We shall denote the Fourier transform of a function,
#, by placing a bar over it, thus, ¢; in other words, ’

HeEnkew) = g | Bxu 70 w07 exp 3yl Hom)} 7, (2:9)

71-2
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578 G. EASON, J. FULTON AND I. N. SNEDDON ON THE

where dV = dx,dx,dx;dr and E, denotes the entire x,;x,x;7-space. If we multiply both
sides of equations (2-1) and (2-2) by exp {i(x,{,+w7)} and integrate over E, then, making
use of the results

| (52 ) exp i,y um} AV = (i 07) (2:4)

472 E4

we find that the equations of motion and the stress-strain relations are equivalent to the
set of algebraic equations

i, 71— pFb = pczwzz")l’, (2-5)
0 — (T, 4, (26)

by means of which the Fourier transforms, 79, 7, of the components of stress and displace-
ment can be determined in terms of F?, the Fourier transforms of the components of the
body force. By the symmetry properties of the constants E#7s we know that Etars = Epasr,
so that the equations (2-6) are equivalent to the set

1764 = EParsf v, (2-7)
If we substitute from equations (2-7) into equations (2-5) we obtain the simple set of
equations atsy, = pFb (2-8)
for the determination of the Fourier transforms of the components of the displacement

vector, where ,
abs = EPrsE & — pcPw?ts, (2-9)

in which 6?5 denotes the Kronecker delta.
The solution of the set of algebraic equations (2-8) is

—:IoDs/‘D: ) /2’10)

where
A2 g3 Tl Al gls I Al g2 i
D =|a2 o F2| Dy=—|a2 o3 F2| Dy=|a? o2 F2|,
W32 38 T3 a3l o338 F3 , laSI 32 Fs]
and . ' all  glz g3
D= g2 22 428

a3l 32 33

In the above analysis we assumed that the quantities £%¢"* were constants. Certain visco-
elastic effects, observable in solids, might be taken into account by assuming that E#es
were operators of the type

92
Ebars — egqrs __I_eleqrs +gﬁq at2 R
where 4975, ¢£as, ... are constants. For such a material the Fourier transforms of the com-
ponents of the displacement vector are still given by the set of equations (2-10) except that

now abs = (e§?™ —iwce§t™s — wc%e41) £ £, — pctw?ors. (2-11)

This has the effect of complicating the calculations in any given problem but the principle
is the same.
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GENERATION OF WAVES IN SOLIDS 579

3. THE SOLUTION OF THE EQUATIONS FOR AN ISOTROPIC SOLID .
In the case of an isotropic elastic solid the stress-strain relation may be written in the form

= ANV (0t 01,), (31)
where A denotes the dilatation A=, (3-2)

and A and g are Lamé’s elastic constants. For such a solid, it is readlly shown that the
solution of the set of equations (2-8) is

PO P (1) BT "
D (= I )

where we have chosenfor our characteristic velocity ¢ the velocity of propagation of P-waves
in the solid:

% ;
6= (/LL 2”) : (3:4)
p
(Bullen 1947, p. 21). In equation (3-3) we have also written
A+2
V2=88, F= —-—} £, (3-5)

To obtain the corresponding expressions for the components of the displacement vector
we make use of Fourier’s integral theorem for four-dimensional transforms which states
that if (&, &,, &3, @) is defined in terms of @(x;, x5, x5, 7) by equation (2-3) then

$e 50 7) = g | B(E ko) exp (G 5 Hom)} AW, (36)

where dW = d¢, d¢, d{;dew and W, is the entire §, £,&;0-space.
- Inverting equation (3-3) by this rule we find that the components of the dlsplacement
vector are given by

=i ﬁz( :1?;3 f"i;) (52212)25:)( ) p (i n o}, (3)

If we denote the components of the strain tensor by y# then
Yoa = $(Up,q+04,5)s v (3-8)
and so 7y, = $(E,0,1£,9,)- (8+9)

Substituting from equation (3-3) into equation (3-9) we obtain the expression
{ﬁZ(V —?) (§ PP+ 6, F0) —2(f—1) (§,€)) (QT”)}
(2 —0?) (y*—f%?)
for the Fourier transforms of the components of strain. Also from equation (3-2) we see that
the Fourier transform of the dilatation is given by the expression
q(r—e?)’

Vog = (3-10)

A= (3-11)
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580 G. EASON, J. FULTON AND I. N. SNEDDON ON THE

Similarly, it follows from equation (3-1) that the Fourier transforms of the components of
the stress tensor are given by the equations

709 = AAS -+ 2uyte /

/Iigrﬁrqu /fé {ﬂz(yz —-(‘)2) (gq Fp _l_gp—Fq) _ 2(/?2 - 1) gpgq(grpr)}
(2 —0?) (y?—f%?) |

From this result it is readily shown that the Fourier transform of the sum of the principal

stresses is given by the formula

T (#12)

(3B —1) L
tp LN ) Sp .
7 ot (3-13)
Inverting these results by means of the Fourier integral theorem, we find that the com-
ponents of the stress tensor are given by the integral formulae

:_g & Tr o
S = —-p—(jf”—zﬂz) qufw472—_—_z)-2 CXP{*l(xsgs‘f"aﬂ)}dW

22 —0?) P +E, F1) —2(82—1) £, (€, F" :
~arp ] G el e,
(3-14)
and that the sum of the principal stresses is
o _BE—4) [ B (xE or) AW (315)

e ! -

4. THE SOLUTION OF THE STATICAL PROBLEM

As a first application of the general theory developed in the last section, we shall obtain
the solution of the statical problem. We obtain the statical problem by assuming that the
body force is a function of the space variables, x,, x,, x5, but not of the time variable 7.

If we write , 1
Fr = ; G (%1, %9, %3)

for the components of the body force, then, making use of the result
fw el dr = 2md(w),

where §(w) denotes the Dirac delta function of argument w, we see that the Fourier transforms
of the components of the body force are

=L G, g, ) 8(0), (41)

where G? is the three-dimensional Fourier transform of Gr. If we substitute this value for
F? into equation (3-3) we obtain the expression

; Bl —u?) G (§21) (£, 5)

b = [(2m) ' 77748
Y= e ) )
B2 Gr— (B2 —1) EPE, G
=,/(2 )
J(2m) T (A+2u) 7t (w)
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GENERATION OF WAVES IN SOLIDS 581
for the Fourier transforms of the components of the displacement vector. Inverting this
result by means of the Fourier inversion theorem we find that the displacement vector has
components 202Gt — (f2— 1) EbE Ga

= g e T e i),
(2m)F (A+24) s 7

where d§ = d§, d¢,dé; and W, denotes the entire £, £,£;-space.
If we now make use of the results

~kr

1 gZexp{ i(x,£,)} 1mt €
(27,)% (k2+7?)? d€ = é(é) (r? =g —hraf) =5
3
o L,ff'g CPCIEE) g (0% ke, (prg

and the Faltung theorem for three-dimensional Fourier transforms (Sneddon 1951, p. 45),
we find, on letting £— 0, that

_ L[ (DGR | (D) (5,—6) (1,—E) G(8) ,
_Sﬂﬂﬂszs{ |r—§]| | plrigp » }d‘é (4-2)
is the solutlon of the statical problem.

In the special case in which the body force is an isolated force of magnltude P actlng at
the origin (0, 0, 0) in the direction of the x;-axis we have

G = P(0,0,1) d(x) 3(y) (2),

in which case (4-2) reduces to

_ (A+pP {xlx3 XoXg x3+/1-|—3,u1}
- 8mu(A+2u)\ P B33 Atur

in agreement with a known result (Love 1927, p. 185).

(4:3)

5. THE SOLUTION OF THE TWO-DIMENSIONAL PROBLEM

The solution appropriate to a two-dimensional isotropic elastic medium in which the
state of stress at a point (¥;,%,) is uniquely determined by the three components
7% (g0’ = 1,2) of the stress tensor, and in which the body force has components
(F1,F?,0), may be obtained from equation (3-7) by assuming that F* is a function of
%, %, and 7 only (¢ = 1,2). We then have

Fe= J(em P bp0) 0E), (@=1,2), (5:1)
where F@ is defined by the relation ’ -

Fa(E,, £y 0) = (2":7)% fSSF“(xl,xz, 1) exp {i(€, %, -+, %,+0r)} dS, (5-2)

in which dS = dx, dx,d7 and S, is the entire #, x,7-space. Substituting from equation (51)
into equation (3-7) with p = « = 1,2 we obtain the two-dimensional solution
w1 [ BETE-) F— (1) F +£, F?) ;
Yl @B @rgpn o tiGaten e}t
| (5:3)
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582 G. EASON, ]J. FULTON AND I. N. SNEDDON ON THE
where dT = d¢,dé,dw and T is the entire & &, w-space, |

(277)%7 £ +&5—
_ f pA(EE+E3—w?) (sfoc Fe £ F) —2(F—1) £, (6, Fy +E,F?) p (54)
277)*/5’2 (61463 —0?) (EF+E3—F%0?)
X exp {—i(&;x; +&,x,+07)}dT
(a,a" = 1,2), by which to calculate the components of stress.
The shearing stresses 7%3 are zero and

T““' _ (ﬂz 2)103“6 fT lw exp{~—1(§1x1—l—§2x2+w”)}dT

33 _

s ) o (55)

6. 'THE SOLUTION OF THE EQUATIONS OF MOTION IN THE CASE OF AXIAL SYMMETRY

In cases in which there is symmetry about a line we may choose cylindrical co-ordinates
(r,0,z) such that the z-axis coincides with the axis of symmetry. When there is such sym-
metry the displacement vector has components (%, 0, w) in this system of co-ordinates. There
are four non-vanishing components of stress which may be denoted, in the usual notation,

by a,, 04, 0, 7,, and which are related to «, w by the equations
du u dw du  dw
(0,,09,0,) = AA+2u (01” 7 9‘2‘)’ rzzﬂ(gz’l‘”a‘r‘)a (6:1)
where, in these co-ordinates, the dilatation is given by the expression
du u dw
A= 0r+ + 5 Frl (6-2)

When transformed to cylindrical co-ordinates, the equations of motion (2-1) reduce, in
the symmetrical case, to

do, 91, 0,—0 0%
ay (?Z 0+ F (’1+2ﬂ) 972’ (6‘3)
or,, do, T, 0w
or Tz PP = (2 (6-4)

‘where (F,, 0, F,) are the components of the body force in the given co-ordinate system.
If we substitute from equations (6-1) and (6-2) into equations (6-3) and (6-4) we obtain
the pair of equations

0%u 10u Pw %
'52{—97—2_‘— ror }—Hﬁ —1) 8rt?z+0z2 - /))2 012’ (6-5)
w 10w d (0u  u P?w
R (#=1z; 0z {37 }+ﬂ2 P /l =P ar?’ (6:6)

If we multiply both sides of equation (6-5) by (2m)~!exp {i(§z+w‘r)}rJ 1(€r) and both sides
of (6:6) by (2m)lexp{i({z+wr)}rJy(ér) and, in both cases, integrate over the whole
rzr-space, we find that this pair of equations is equivalent to the algebraic equations

(%6240 —pPo?) u—i(f2—1) EQw = pF, [, (6:7)
i(f2—1) EQu+ (82+ 5 —p?0?) w = pF, [, - (88)
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GENERATION OF WAVES IN SOLIDS 583

between the first-order Fourier-Hankel transforms F,, # defined by

Fot) =5- [ [ esplitiz+onydzar [r,@) (7, Fou)dr, (6:9)
and the zero-order Fourier-Hankel transforms ,, @ defined by |
(F,0) = o f :o f ioexp {i({,’z—l—m)}cizd'r f 'w;Jo(gr) (F,wydr.  (610)
Solving equations (67) and (6-8) for %, @ in terms of F,, F, we have
s GHEEPORHENEE
o PELC— R B i) &F, 612

62<§2+C2 (1)2) (§2+€2 ﬂ2€02)

If, for simplicity, we restrict our attention to the case in which F, = 0, F, = Z and then
invert equations (6:11) and (6:12) by the appropriate theorems for Fourier and Hankel
transforms (Sneddon 1951, pp. 44 and 52), we find, for the components of the displacement
vector,

_ 207, (6) Z g ,
oo Vo | e it o atan [ SE Ty (619

(B262+- 02— ) E,(E) ZkE |
w=gug ). | eplmieronatdn | e —AEre—p O

Integral expressions for the non-vanishing components of the stress tensor can be obtained
in a similar fashion. For instance, it follows from equation (6-2) that

= f ) f " expi(lz+or)}dzdr f "rAT (&) dr — i@+,
— J —0 0
so that, from equations (6'11) and ( 6~12),,we have, as the result of inverting,

2,,czf f_wl exp {—i({z+wr)}d{dw gg‘zfﬁ————?:%izé. (6:15)

The sum of the three principal stresses is then given by the formula
0, fopto, = (P-4 uA  (616)

To obtain the corresponding expression for ¢, we multiply the third equation of the set
(6-1) by (2n)Lexp {i({z+wr)}rJ(£r) and integrate to obtain

iECT (&) {F%02+ (32 —2) 2 —p*w?} Z dE
7= 21rc2J~J exp{—i( §z+”7)}dcd“f | ((£2+§2 w(‘%)(ﬁzﬂ)ZLﬁsz)} '(.6'”)

Similarly, the fourth equation of the set (6-1) yields the result

£27, (&) {22 — (B2 —2) (22— pou?} ZdE '
ne=—ghg)_.|_eowi=i gz*“”)}dgd“’f (<§1ic2 et (619

72 ) Vor. 248. A.



http://rsta.royalsocietypublishing.org/

A A

JA '\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1~

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

584 G. EASON, J. FULTON AND I. N. SNEDDON ON THE

To derive an expression for ¢, we make use of the fact that the equation of motion (6-3)
may, in the case F, = 0, be written in the form

2
(%(ﬂo,) =7(0,+0g) + (1+28) rng—z;—rZ 0;:. (6:19)

Now 0, + g, can be found from equations (6-16) and (6-17) and « and 7,, are given by equa-
tions (6-13) and (6-18), so that we obtain, on integrating (6-19), that

o= E D[ [ cxp e o atdn | ASEN L

E{(p*—2) 2 —pE*—p*(f*—2) 2}Jo(§r)Zd§
21102f f 1CXP{*‘1(CZ+W)}dCd‘0f B+rl—w?) (21— ;20,2)

(6-20)

The equations (6:16) to (6-20) are sufficient for the determination of the components of
the stress tensor in cases in which the body force Z is prescribed.
The corresponding statical solution is easily deduced from these results by taking

Z—3fn2),
so that, by definition, _ ( ™) FE, €) 8(w), (6:21)
where FE,0) = :/-(lé;) f :eicz dz f :rf(r, 2) J,(&) dr. (6-22)
Substituting from equation (6-21) into equations (613) and (6-14) we obtain the expressions
SN f . 5(,6’252+€(2§2~:2(g))2f(§, 0de a4

for the components of the displacement vector in the statical case, when we perform the
integrations with respect to w.
If Z is due to a point force of magnitude P acting at the origin, then

(r,2) = o 5(7) (),
) thatf= )"#P and

{sin ({z)d{  (f*—1)rzP
27[2,“ 2 fgzjl(g dgf (£24-02)2 8ﬂﬂﬂ2(72+22)%’

__P [ (P27 cos (E2) AE _ {(A°+1) *+28°2%} P
= 2772#/3’2.[ EJo(ér) dE fo (E 72 = smupr P+

in agreement with the result (4:3) above. It will be noted that in this section 7 is the cylin-
drical co-ordinate (x}+x3)¥, whereas in (4+3) it denotes (x4 x24-42)%.
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GENERATION OF WAVES IN SOLIDS 585

II. TWO-DIMENSIONAL PROBLEMS

7. INTRODUGTION

In this section we shall consider the solution of a few two-dimensional problems by means
of the formulae developed in § 5 above. We shall adopt the usual notation for such problems,
i.e. we shall write

=y v¥=0; =90, =97, =7,

for the components of the displacement vector and the stress tensor, the co-ordinates of
a typical point of the medium being denoted by (x,7).

In addition, we shall assume, for the sake of simplicity, that only the x-component of
the body force is non-zero, i.e. we shall take F' = X, F? = 0. With this assumption we find
that the equatlons (5-3) assume the forms

1 {/5’2(52 +1 —wz) (£2—1) &% : :
(27,)%02 s B+ 72 —?) (E+ 72 —f2?) X¢XP{_I(§x+77y+“)7)}dS, (7-1)

p? EnX exp {—i(&x+ny+or)} .
(2w>%c1fs3<£2+n —) @) S (7-2)

where dS = dfdydw and §; is the whole £yw-space.
Similarly, the set of equations (5-4) lead to the relations

v=—

iEXexp{— |
9 iE{R2(E2 42— 0?) — (f2—1) (£2—
”x_”yz“(gﬂ)'lz}ﬁzfsslg{ﬂ ((gz:l_l_;’z__zz)) (gz(f_” l)ﬂzng) 7 }XCXP{ i(§x+yy+or)}dS,

(7-4)

=~ e e gy e it ron)ds, (1)

from which the components of stress o, 0, 7,, may readily be calculated. It will be recalled
thatw = 1,, = 7,, = 0, and that, as aresultof equation (5'5), ¢, = (}4?—1) (¢, +0,)/(2—1),

in the case of plane strain.

8. THE DISTRIBUTION OF STRESS PRODUCED BY A PERIODIC POINT FORCE

We shall first of all consider the solution of the equations of motion when the body force
X, acting at the origin in the direction of x increasing, varies harmonically with the time -
with period 27/p. For such a body force we may write

X= % 8(x) 8(y) e, (81)
where 1=2. (8-2)
0

72-2
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586 G. EASON, J. FULTON AND I. N. SNEDDON ON THE
It follows as a result of simple integrations that
- F
X = (2”)%/)8((0—1—/1). (8-3)
If we rewrite equations (7-1) and (7-2) in the forms
1 X & i) _ .
(27,)% 3o {gz T —o? +§2 T2 /920)2} exp{—i(fx+yy+or)}dS, (8:4)

gX{ 1

2
(27r1) ¥ ), B2+ 2 82492 w2”£2+”g_/92w2}exp{—i(§x+77y+m)}ds, (8-5)

substitute the expression (8:3) for X, and perform the w-integrations, we obtain the expres-
sions

iAr
U = 41;‘23/‘ 2{33;21(%% )‘I‘ﬁ ] 2I(x,y,ﬁ/1)} (8'6)
) il ‘
~£‘T§ﬂ 2{3—5%!; [I(x,y, /1) —ﬂzl(x,y,ﬁ/l)]}, (8'7)
where we have written
exp {—i(fx+ny)}dEdy .
xa% f f_m (§2+,72) (g2_|_7] -—/12) (8 8)

If we now make the change of variables defined by £ = pcosg, 7 = psing, x = rcosd,
y = rsind we find, on performing the integration with respect to ¢, that I(x,y, ) is a func-
tion of r and A alone and that

K I (S A RACOL )

Making use of a well-known result in the theory of Bessel functions (Watson 1944, p- 424)
we find that -
L 9,2) = 25 {1~ gmid b ), (8:9)

where HV(Ar) = J,(Ar) +1Y,(Ar), ¥,(Ar) denoting Weber’s Bessel function of the second kind.

Substituting from the formula (8-9) into equations (8-6) and (8-7), and writing the results
in terms of ¢, the time, we see that the displacement produced by a point force of this kind
has components

k) ) -Hem(E) omEl). w

=g (8) () =

where ¢, is the second elastic wave velocity. Expressions for the compdnents of the stress
tensor may be obtained by differentiating equations (8-10) and (8-11) ; these will be found
to be in agreement with those found by Lamb (1904).
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GENERATION OF WAVES IN SOLIDS 587

9. THE DISTRIBUTION »OF STRESS PRODUCED BY AN IMPULSIVE POINT FORCE

We may represent an impulsive force of magnitude F acting at the origin by the expression

F
X = 2062 3(4) 30, (9:1)
which gives us, for X, the relation X= p(F2i;) 3> (9-2)

since 8(¢) = ¢,0(7).
If we substitute the expression (9-2) into equations (8-4) and (8-5) we find that the com-
ponents of the displacement vector, due to an impulsive force at the origin, are given by

_ Fey i, | ,,0U, _ Fep 92 )
| = T8y 2{6x2 +# 6y2}’ v= 8 /5’23x(7y( /9 L), | (9-3)
\ [ exp{—i(fx+7y+wr)}dS _ [ exp{—i(fx+ny+or)}dS 94
where 4 R et T W R G
As in the previous section we find that d1,/dr is a function of 7 only, and that
oI,  4m* (*sin (pr/ﬂ)
r /9 P) I(Pr)
- %,f (1<),
- (9°5)

~ =P} (124,

A similar expression can be obtained for 41;/dr by putting f = 1 in equation (9-5). Sub-
stituting these values into equations (9-3) we obtain the formulae

0 (r>7)
2_1:%&:‘ i;;('r?—rz)“*—i—xz—;y—z(rz——ﬂ)% (r'<r<r), (9;6)
- o B gy (1<),
and ( 0 | (r>1),
5t £ B
c
| (st A= plr— ) S () — =} (1<),

for the determination of the components of the displacement vector. In these formulae
7 =¢;t and 7" = ¢yt = ¢, ¢/p.

Substituting the expressions for z and v into the stress-strain relations we obtain the
following equations by means of which the components of stress can be calculated:

2np*(o,+0,) 0 (r>1), .
(82 01)610 “{x(72—r2)—* (:<:);} (9-8)
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588 G. EASON, J. FULTON AND I. N. SNEDDON ON THE
(0, —0,)
xe ¥
[ ‘ 0 . (r>7'_)’ 3
x2—y? 2(x%*—3y? 4 ,
_72_y_ (72,,42)%__ __(__74_y_) (72_72)—1}_;6(,62_3!/2) (72_r2)§ (7' <r<7),

2= =2 S g ) (g

(=) fr ) B (a3 (P A (r<r);

\

(9-9)
2mp%r,,
yo, F
| 0 (r>1),
= ) iy S gy ot <r<n),
A= B et gy 2D |
X {(r2—12)H— 1212 B % (2 8y7) (P T} (r<T),
(9-10)

It is readily seen from these expressions that the disturbance is propagated outwards
from the centre with velocities ¢, and ¢, = ¢,/f. These waves are known in seismology as
the P- and S-waves respectively (Bullen 1947, p. 74). The wave fronts are circles, centre
the origin and radii 7 = ¢, ¢, 7’ = ¢,¢. At the wave front the components of stress and of dis-
placement have infinite discontinuities. This is, of course, an impossible situation to arise
in a perfectly elastic solid; it is due to the representation of the impulsive applied force by
the idealized Dirac delta function.

s=======

! 1 |

Q : ,

[ !

L /i

. f\\\ —_ //'l
o, F|(2mf2ur?) |emmm=m= N S
|
I 1

0 32 1

. /T —

Ficure 1. The displacement D in the r-direction at the point with polar co-ordinates r, 6, produced
by an impulsive force F applied at the origin at time =0 in an infinite two-dimensional
elastic solid of Poisson ratio } (i.e. A = ). The full curve corresponds to 6 = 0°, the dotted

curve to 6 = 45°, and the broken curve to 6 = 90°,
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GENERATION OF WAVES IN SOLIDS 589

An interesting fact emerges from the evaluation of the expressions for the displacement
components. The variation of these components is shown in figure 1. In the direction in
which the force is acting the wave front of the P-wave is an infinite discontinuity, but not
so the wave front of the S-wave, while in a direction perpendicular to this, the wave front
of the S~wave is an infinite discontinuity, but not the wave front of the P-wave. In directions
intermediate to these, both wave fronts are infinite discontinuities. This fact may explain
some of the discrepancies existing in the interpretation of geophysical observations, since
in the first case, the arrival of the S-wave, and in the second that of the P-wave would not
be apparent. |

10. THE EFFECT OF A POINT FORCE SUDDENLY APPLIED
Another example which may be treated in the same way, and which can be reduced to
a problem whose solution is known, thus providing a check on the method, is that of cal-
culating the stress distribution due to an applied force of magnitude F, acting at the origin,
whose time variation can be represented by the Heaviside unit function -

[0 (1=<0),
H({t) = {1  (£>0).
We can write for the applied force
F
X == 0(x) 8(y) H(2),

and, by using a method similar to that employed by Sneddon (1951, p. 406), we have

F 1
T {ga( )— %} (10-1)

Substituting from equation (10-1) into equations (8-4) and (8:5) we find that the com-
ponents of the displacement vector are given by the equations (9-3) with

. jw fw exp{—i(&x+py)}dedy i ( exp{—i(&x+ny-+wr)}dS (10:2)
S P R W@ T1) E+—0?)
I _f j exp {—i(fx+ny)}dEdy f exp{—i(fx+yy+or)}dS (10-3)
ol (&+77)? 0(E+7?) (8417 —p%?)
The derivatives of these integrals [;, I, may be evaluated by methods similar to those
employed above to give the expressions

X=

: 0 (r>17),
(l—gf—;) 7(72—72)*+721n{;+(§——1)%} (7" <r<),
4wp§2r2u _ ] . (1'0-4)
— ( )7{( — ) g2 )8
R #(1)]] e=n
0 7’>T
2___"/"327407_ (r2—1r2)} 7 (7 <r<'r) (10-5)

Frxy
(2=t —p(r2—2)F  (r<7').

for the components of the displacement vector.
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590 G. EASON, J. FULTON AND I. N. SNEDDON ON THE
Substituting these expressions into the stress-strain relations we obtain the equations
0 (r>1),
Oyt 0y = 2 1) 1xF (10-6)
Y — ('5 ”ﬂzzz (7-2 .___._1-2) ‘% (r<7) ;
( 0 (r>1),
2
(1-2) il r<r<n),
77/5)27‘4(0' —0,) s L (1
s 0-7
)b B () plr ) e
2 4y* , '
5 (= E-mi—prr—mh (<r);
' 0 r>n, |
212 2 [  4x?\ )
anprri, 2 o= S (1-5) (e (r<r<n), |
vk b 2K gpia oyoh_(r2_ ,2\-h
prr—rm) =T (gt (o) 5 (14
L | B 2—r— (=)} (r<r).
If we let 7 tend to infinity in these expressions we find that (10-8)
__B-0xF kL 12y) ¥ 2(p*—1) #?
Opt 0y =— mpr > CvT 0T (1 V2 T T T onrpe {1 =0 }a
(10-9)

in agreement with the expressions obtained from equilibrium theory.

11. THE STRESSES PRODUCED BY A POINT FORCE MOVING WITH UNIFORM VELOCITY
ALONG THE LINE IN WHICH IT ACTS

We shall consider the case in which the point force moves along the x-axis with uniform
velocity » and has magnitude F. In this case the body force may be represented by

‘Xz%(?(x-—alr) 5y), (11-1)
where ay = v/c,. (11-2)
We now have for X the expression

_ F

X=’;:/—(2-“)5(0)+061§)- (11-3)

Equations (7 3), (7-4) and (7-5) now take the forms

oroy ==t [ [ RIS e, (114

- P (=8 (P ) @) |
roy= g [ e g G o) _'L”y}]((ﬁ(.i;’)’

A T R I
(11-6)

where oy = V[Cy. (117)

T = 7 gm2p2


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GENERATION OF WAVES IN SOLIDS ' 591

Performing the integration with respect to 7 in equation (11-4) we find that
(B2—1)F (= ifexp{—if(x—vt)—|| (1"“%)1}?/}(1{;:
272(1—a?)t ) _,, [€]

2‘7%%% : exp {— (1—a})} &y} sin {£(x—vt)} dE.

0,40, =—

The evaluation of this integral is elementary and gives

(B2=1) (x—w) F_ * N
21— {(x—vt)2+ (1—a2) 4%} (11-8)

Similarly the equations (11-5) and (11-6) lead to the relations

O t0,=—

_ _20x—v) F( (1—3}a}) (1—af)~* (1—a5)t :
U'x'_'a'y = 7rat§ {(x_v?)2+( '—“2)!/ (x—vt)2+(l'~a%)y2}’ (11 9)
__ By (1—af)? (1—3a3) (1 —a3)? i
xy ——ﬁg{(x—'—vt)z—l—(l—oc%)yz—(x——vt)gz—}—(l-a§) ]/2} (1]. 10)

yla

Ficure 2. The variation of the maximum shearing stress = in the case of a point force of magnitude
F moving with uniform velocity v = 0-4¢, in the direction in which it acts in a medium with
Poisson ratio 3. The numbers attached to the curves give the values of the quantity mat/F,
where a is some characteristic unit of length.

“These expressions are in a form suitable for calculation. The results of such a calculation
are shown in figure 2, which gives a graphical representation of the maximum shearing
stress © in the case of a point force of magnitude F moving with velocity v = 0-4¢, in a
medium with Poisson ratio 1 (i.e. 1=u). The curves shown are the isochromatic lines

v = constant; the numbers attached to the curve give the values of the quantlty nax /F where
a is some characteristic length.

The corresponding curves for the statical case v = 0 may be obtained by letting v— 0 in
equations (11-8) to (11-10). They are shown in figure 3. A comparison between the two sets
of curves shows clearly the effect upon the stress distribution of the velocity with which the
point force moves. '

73 ' ! Vor. 248. A. .
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592 G. EASON, J. FULTON AND I. N. SNEDDON ON THE

Ficure 3. The variation of the maximum shearing stress v in the case of a static point force of
magnitude F acting at the origin in a medium with Poisson ratio }. The numbers attached to
the curves give the values of the quantity mat/F, where a is some characteristic length.

| F”g’“

Ficure 4. The variation of the maximum shearing stress « in the case of a point force of magnitude
P moving with uniform velocity » = 0-4¢, at right angles to the direction of the force in a medium
with Poisson ratio }. The numbers attached to the curves give the values of the quantity 7ax/P,
where a is some characteristic length. '

12. THE STRESSES PRODUCED BY A POINT FORCE MOVING WITH UNIFORM VELOCITY
AT RIGHT ANGLES TO THE DIRECTION IN WHICH IT ACTS

In this section we consider a problem similar to that discussed in the last section, the
difference being that now the force, which will be taken to be of magnitude P pointing in
the x-direction, moves along the y-axis with uniform velocity . We therefore have '

x=Lswow-pn, (12:1)
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' GENERATION OF WAVES IN SOLIDS 593

with b = ufey, (12-2)

so that X=—L _ sw+pn) (12-3)
pJiam) TR

If we substitute for X from equation (12-3) into equation (7-3) and perform the integra-
tion with respect to » we find that

o to =G Pf f 1£eXP[—1{€x+17(y upi] dedy.
S +(1=A)P
The integrations are practically identical with those of the last section. They yield the

equation

fi—1) (1—fpiaP
R (= e 1z

Similarly, from equations (7-4) and (7-5) we obtain the equations

_ 2P (- (=) ) ,
=0 = = gy \ TRl (1= 5+ i) (129
_ - P a-gF  a—pp ,

= e (e 020

with £, = u/c,.
The isochromatics corresponding to a velocity # = 0-4¢; have been calculated in this
case also. They are shown in figure 4.

13. THE STRESSES PRODUCED BY A POINT FORCE MOVING
WITH UNIFORM VELOCITY GREATER THAN ¢,

In this section we shall calculate the stress distribution set up by a point force whose point
of application is moving with uniform velocity v>¢,, the smaller of the wave velocities,
along the line in which the force acts. As in §11 we have X = (F/p) d(x—a,7) d(y), where
@, = v/¢;<1. This results in the same expression for X and equatlons (11-4), (11-5) and
(11-6) become now

ax—i—(ry:—-

J‘ J‘ ifexp [—i{f(x— ) ‘Hﬂ/}] dédy, : (13-1)

21r2/5’2 P (- &

R o (o IO —ah B — (1) 1) [t )]
ov=—zp| ] T (- B — (3—1) £} d,

0,—

(13-2)

_ in{f?[(1—af) E2+7%] —2(f2—1) &} exp [ —i{E(x—ot) +19}]
=gl P+ 0—a) B3 — @ - D ey "
it being assumed that a; <1 <a,. (13:3)

732
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594 G. EASON, J. FULTON AND I. N. SNEDDON ON THE
These integrals may be evaluated by the methods outlined in § 11; we find that

_ (f2—1) (x—vt) F
(1 —ad){(x—vt)*+ (1 —af) 2}’

_EE{(I —30}) (1 —af)~# (x—0t)
o (x—vt)2+ (1 —a}) y?

o+, = (13-4)

00, = — b vt — (— 1)y} bmdle—ot+ (G- 1)l

(13-5)

—q2)? .
o =~ (e g~ (1= 40D 80— 1y — (x— )}

A A

— (1 —343) B{(63— )ty + (x—ot)}]. (13:6)

OF

i
Y

Ficure 5. The variation of the maximum shearing stress = in the case of a point force of magnitude
F moving with velocity » = 0-8¢; in the direction in which it acts in a medium with" Poisson
ratio . The broken lines having equations x — vt = + (v2/c2 — 1)} y, are lines across which the
stress is discontinuous. The numbers attached to the curves give the values of the quantity
max[F, where a is some characteristic length. '

) §

S

When the velocity v is greater than c,, but less than ¢, we see, therefore, that the lines

SOCIETY

x—vt =+ (a3 —1)ty (13-7)

are lines across which the stress is discontinuous. This is due to the presence of the Dirac
delta function in the above solution. This naturally leads to discontinuities along the same
lines in the pattern of isochromatics (cf. figure 5, which shows the case v = 0-8¢;, 1 = y)
which have now changed in shape a great deal from those obtained in §11.

A similar analysis holds in the case in which the stresses are set up by a point force moving
with uniform velocity u>¢, along a line perpendicular to the direction in which the force

OF
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GENERATION OF WAVES IN SOLIDS 595

acts. For a force of magnitude P we have, in the notation of § 10, the following expressions
for the components of stress:

(F-1) -t | .
TR o

=0y = — 2 [ (LML, snty—an) 33— 1) 2~ (y— 3], (139)

o r (LAt (y—ut) 1 2 2 2 .
T np [(1~ﬂ%) o e LR ORI (b el ) }]. (13-10)

Again, as is expected from the previous case, we have discontinuities along the lines
y—ut =+ (f3—1)tx (18-11)

These lines are shown in figure 6 which shows the isochromatics in a typical case (£, = 0-8,
A=p).

o,+0, =

Ficure 6. The variation of the maximum shearing stress T in the case of a point force of magnitude
- P moving with velocity » = 0-8¢, at right angles to the direction in which it acts in a medium
with Poisson ratio . The broken lines, having equations y —ut = + (v2/c— 1)} x, are lines across
which the stress is discontinuous. The numbers attached to the curves give the values of the
quantity maw/P where a is some characteristic length. '

II1. THREE-DIMENSIONAL PROBLEMS

14. THE STRESSES PRODUCED BY A POINT FORCE MOVING WITH
UNIFORM VELOCITY ALONG THE LINE IN WHICH IT ACTS

In this section and the next we shall consider the solution of particular three-dimensional
problems using rectangular Cartesian co-ordinates. We shall make use of the general
solution derived in § 3. In both the applications we shall suppose that the body force is of
the form F = (0, 0, Z). We shall also write («, s, w) for the components of the displacement
and take x; = x, x, = y, x3 = z. The components of the stress tensor will be written, in the

usual way, 1! =0, ™2 =0, ™ =0, M =1=71, B =r1=7 B =12=71,.
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596 G. EASON, J. FULTON AND I. N. SNEDDON ON THE
With this notation, equations (3-7) assume the forms

_ Pl HZe9dW .
=T ) ) ey

_ p-1 7Z e 12 dW ]
=~ ] 1e2)

_ B2 (2 —w?) — (*—1) (B} Ze 2 dW. :
= N (49)
where dW = d{dyd{dw, y% = £2+-92+(2, W, is the entire &plw-space and Q denotes the
inner product Q = Ex+ny +Lz+or. (14-4)

Similarly from equations (3-14) we derive the relations

‘ __(882—4)p [ i{Ze®dW )
Oyt 0y+0, = g ), et (14-5)

g = B=Dp( i~y {Ze*dW ,
I s T 19

o= A [ B (B ) (€~ () Ze i0dW :
o= gg,, =) =P (e
___p_[ nlf(P—0?)—2(F—1) B Ze AW .8)
=), (=) (F—Fo?) ’ (14%)

___p [ EPO—e) 21 () ZePdW ”
=g e e 19)

2__ il 7 e-i

7 _p(f*—-1) iépfZ e *dW , (14-10)

# =2 ) =) =P
by means of which we can derive the components of the stress tensor.

If the body force Z is a point force of magmtude F which moves with velocity » along the
z-axis then

Z=—p—3(z-—-cx17) 0(x) 8(y), (14-11)
where, as before, &, = v/c,. The Fourier transform of this function is readily shown to be

_ F :
Z =g dwtnd); (14-12)

substituting from equation (14-12) into equations (14-1), (14-2) and (14-3) and performing
the w-integration we find that

_ _Ep-1)idl, | :
—— e | (14-13)
__F(pr-1)idl, :
T (14-14)

w=go|PL-it-1) g2 ), (1415)
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GENERATION OF WAVES IN SOLIDS 597

where {exp [—if{fx+ny+{(z—vt)}] dE d’? d¢ .
I _f_wf_wf { 2_|__,7 _+_ ——OL2) C2}{§2+” +( _“2) §2}’ (14 16)

_ [ (° [ expl=illx+my+{(z—vt)}]dE dyd{ )
Iz‘j.wf_wf_w Bt (1—d) (14:17)

with a, = v/c,.
If welet§ = pcosg, n = psing, x = rcosd, y = rsinfd and perform the integrations with
respect to ¢ and { we find that '

L= 2’”1) [Cason fem—emy L, (14-18)

z—ut

Yi,2 = «/(1—““1),2) .

This shows that 7, is a function of r = ,/(x2+y?) and z—uv¢ only and that

where we have put .(14'19)

o1, 2
7;1 ﬂll)f ,07’ {e=P7,—e~ 7.} dp.

Making use of a well-known integral (Watson 1944, p. 514) we find that

0] 2n?i Y2 N )
= A1) ‘J(r2+7%) NGzl (1420)

Similarly, it is readily shown that

o, emti ((1—ad)t (1—ap) ,
iz—ot) (- >{(r2+y%)* (r2+y%)*’ (14-21)
2
and that I,— 2m (14-22)

(1—ad) (P +73)t

Inserting the values (14-20), (14 21) and (14- 22) into equations (14-13) to (14-15) we
obtain the formula ‘

F [ 7 } .
~ dmpadr? :(72+y2)i (PZ+y2)° (14-23)
= yF { 72 . Y1 } )
v dmpadr® \(r2+y2)t (24933’ (14-24)
F {(1—ag)% (1_0@)—%}
T - ; 1425
T (1425)

by means of which the components of the displacement vector may be calculated. The
components of stress may similarly be calculated by means of equations (14+5) to (14-10).
We shall not repeat these calculations here since it is easier to treat this problem by the
methods of § 6, and we shall do this later (§17 below).
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15. THE STRESSES PRODUCED BY A POINT FORCE MOVING WITH UNIFORM
VELOCITY PERPENDICULAR TO THE DIRECTION OF THE FORCE

We shall now consider the case of a point force of magnitude P acting in the z-direction,
and with a point of application which is moving with uniform velocity « along the x-axis.
We then have :

P
Z=20x=f17)2(y) 9(2), (15-1)
where f; = u/c,. The Fourier transform of this body force is readily seen to be

Z— 580 +hE); (152

substituting from equation (15-2) into equations (14:1) to (14-3) we find that the com-
ponents of the displacement vector are given by the formulae

T 53
- (ﬁ;ﬁﬂl)f;;gz (15-4)
= 8711,;/5’2 {/7 L+ (f2— )a Il} (15-5)
where have we denoted by I,, I, the integrals
- [ R, s
I,= Lo f f‘” exp[~—1{£(x ﬂg)gzy;fz}z] dgdypd¢ (157

If, in the integral I; we let # = pcos¢, { = psing, y = rcosf, z = rsinf and perform the
integrations with respect to ¢, £ we find that 7, is a function of x—u¢ and r only and that

0] Igz(ﬁz f {(1—p3)ter—(1 ;ﬂf)%e~p81}‘]—l('bp—r)d/’> (15-8)
where 0y, = :/(f——/%;) (15-9)

(B, = ujc,). The integral on the right-hand side of (15-8) is elementary (Watson 1944,
p. 514) and we obtain

c?[l___ on?
o~ g

where, it will be noted, 72 = y24-z% The integral I, may be evaluated by a similar procedure:

D2+ —(1—pD (P +oDH, (15-10)

om?

1=AD (P +o)Y

I, = (15:11)
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GENERATION OF WAVES IN SOLIDS ‘ 599
substituting from equatlons (15 10) and (15-11) into equations (15-3), (15-4) and (15-5)
we find that - () yP( __1_) (1512
dmup3r? R’
__ 4y o(L_ 1 .
v = 4W,2r4{12 — R+ (x—ut) (R y )} (15-13)
P (83 v _(x—up)?22(1 1 .
= et (R R) = E (), (15:14)
where R? , = (1—=0%,) (4 +22) 4+ (x—ut)?, r?=y?+2z%2 (15-15)

In a similar way, if we insert the value (15-2) for Z in equations (14:5) to (14-10) and
carry out the integrations we find that

om0, = 21;;2{(1327—2131) (1 3ry) ( __) l:l+ x rzut)Z 6(x ut)z :l
— (x—ut)? (];3 1;3)[ (= ut yZ:I (15°17)
O,— 0, = 27;;,2 {ﬂz ﬁZ(stut)z | 3ry4 (Ry,—R,)) _(x—ut)z(kl—:*—'Rig.) [l—(x_;‘——#—%—z]
_}_(1; 1;)[14- (x— ut)2 522(x ut)? 2(x ut)z] (s 18)
ro= 47;y§r2 {ﬂg(szgut)z_%% +Rz—Rn (1 +3(Zz—y2))
__(x_ut <_'—_) ( llzz—y) 222(3674 ! (Ra 1;3)}’ (15-19)
r = Pgr/;;fzt){ ﬂZrZ ( ) ( 725z2) zz(,iz_ut)z(é_l%})}’  (15-20)
rry = W{?’(R R) 2(x—ut)? (153 53)}. (1521)

A number of calculations based on the formulae (15-16) to (15-21) have been performed
(Eason 1954) for the values f? = 0-01 and f? = 0-30 in an elastic solid for which the Lamé
constants A and x are equal. The first of these cases (f;, = 0-1) corresponds to a force which is
moving with a velocity « equal to one-tenth of the larger wave velocity ¢;. In this case it
turns out that the numerical values of the components of stress in terms of the parameters.
x—ut, y, z are almost identical with the same quantities calculated for a statical force in
terms of parameters x, y, z. The variation of one such component of stress is shown in
figure 7. In this diagram the values of the stress component ¢, in planes z = constant are
depicted by plotting the lines in those planes along which 0, is a constant. The curves shown
in figure 7 give the values of 470,42/F in the plane z = a, but it is easily seen how similar
contours in planes parallel to this one can be calculated directly from this diagram.

74 VoL. 248. A.
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600 G. EASON, J. FULTON AND I. N. SNEDDON ON THE

In figure 8 we have depicted these contours in the case of a much higher velocity—that
corresponding to f? = 0-3. As we should' expect, the values of the component ¢, differ
greatly from those obtained in the statical case.

y/a 0-0

Ficure 7. The variation of o, with ¥ —ut and y in the plane z = a, where 4 is some characteristic
length, in the case of a point force of magnitude P which acts in the z-direction and whose
point of application is moving along the x-axis with uniform velocity # = 0-1¢;. The numbers
attached to the curves give the values of the dimensionless quantity 47a%s,/P. The value of o,
in any plane parallel to z = a is easily obtained by using the fact that if x—ut and y are fixed
o, is inversely proportional to z2. The Poisson ratio of the material is taken to be .

ylo 00

4 \\%U&// —
/

Ficure 8. The variation of o, with x—uf and y in the plane z = 4, where a is some characteristic
length, in the case of a point force of magnitude P which acts in the z-direction and whose point
of application is moving along the x-axis with uniform velocity u = §,¢,, where 2 = 0-3. The
values of the dimensionless quantity 4ma%s, /P are attached to the appropriate curves. The value
of o, in any plane parallel to z = a is easily obtained by using the fact that if x—u¢ and y are
fixed o, is inversely proportional to z2. It is assumed that the solid has a Poisson ratio equal to }.

oyt <
SL/O T
=
i
(=]
(<]

P
=500
>
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GENERATION OF WAVES IN SOLIDS 601

The reader who is interested in the numerical values of the other components of the stress
tensor and in the variation of stress throughout the solid is referred to Eason’s thesis (Eason
1954) where these matters are treated in great detail.

16. THE EFFECT OF A CIRCULAR DISK OF PRESSURE MOVING WITH UNIFORM
VELOCITY AT RIGHT ANGLES TO THE DIRECTION IN WHICH IT ACTS

We shall consider the case of a disk of pressure of magnitude P, the radius of the disk
being a, which acts in the z-direction but whose centre moves with uniform velocity « along
the x-axis. We then have for the body force Z,

P .
—=d(z) if (x—py71)%+y?<a?,
, { S3@) i (e—fin)y
0 if (#—pi7)*+yP>d
where #, = u/c,. The Fourier transform of this function is, by definition,
452,; 5(z) eitedz f elor dr f

—at+phT

aty a*~(x— i)
e[ ey

—[a*—(x—p1 7)1t

Z ==
By changing the variables from #, y, 7 to 7, § where

x—pf, 71 =rcosl, y=rsind,
we find that

. © a 2w .
z- f exp {ir(0-+5,£)} dr f rdr f exp {ip'r cos (6—¢)} do),
4mp ) —w 0 0
where p’ = /(§2+7?) and tan g = 5/£. The integrations are now elementary and give

Pad(w+5£) 21 g2 :

If, now, we substitute this value for Z into equations (14-1) to (14:3) and perform the
integration with respect to w we obtain the cxpressions

__Pa [ f CJl{aJ(€2+772)}[ 1 ]
T e R (S D LA K (1 /5’%)€2+77 + (A= E+r+0
Xexp[—l{ﬁ(x ut)+w+éz}]d§dﬂd€, (16-2)

Z=

. f f rzUl{aJ(ﬁzﬂz)}[ ]
47f2ﬂ 3 ~  EXE+ph)E LO-F3) €2+772+Cz (1—4) £2+rz +
X exp [—{g(x—ut) +ny+{z}] dEdpdl, (16:3)
f f f Jifa J (& +7? }[ £2+4p? _ (A=) &+n® ]
4ﬂ2ﬂ 3w g+t LA e+r+0C 1) &+r*+

x exp [ —i{E(x—ut) +ny+{z}] dEdpdl.  (16-4)
The evaluation of these integrals would present a formidable problem in the general case.
In the case in which the velocity z is very much less than ¢, it is possible to expand the

integrand in terms of 7 and f%; we then find that the integrals, which arise as coefficients
in this expansion, may be evaluated in closed form.

74-2
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602 G. EASON, J. FULTON AND I. N. SNEDDON ON THE

For instance, if we expand the integrand in equation (16-2) in powers of § we find
£CJ {dJ &+1°} (p—1)¢
AN A LR e
x exp [—H{E(x—ut) +ny -+ (23] dEdy dL.
Performing the integrations with respect to { we find that this expression reduces to the form
2
vm g [ [T A 1) C e 1 )
xexp [—/(E2+7%) | z| —i{E(x—ut) +yy}] dEdy.

If we change to new variables 7, 8, p, ¢ defined by the equations

§=pcosg, n=psing, x—ut=rcosl, y=rsind
and perform the integrations with respect to ¢ we find that

_ Paz(x—ur)

e U LARTDRY LomL DGR RS (R

z(x—ut)

+321(1,2; 0) — I(1,3; 1)]}, (165)

where Iimyn; p) = f " T (ap) J,(rp) e=0 pbdp (16+6)
0

and it will be noted that, here,

2 = (x—ut)?+y>2 ' (16-7)

In a similar fashion we can show that the components v and w, may be written in the forms
Payz —1 (x—ut)? |
o (N CRERY Sl ) (B E=u 11,35 0)

+zI(1,2;0)——(’5—:—”-t)—21(1,3;1):|}, (16-8)

— e ) 10,05 1)+ (1) 200, 05 0+ 41 [ (304 1) 10,15 —2)

(x ut) (3134_1_1)_[( l)—I—Z(3ﬂ4+l) I(lal; -1)

(3ﬁ4+1)z(x “) 101,25 0)+221(1,1; 0) — (x “’ 11,2 1)]} (16-9)

Integrals of the type (16-6) have been evaluated in closed form and tables of values
published recently (Eason, Noble & Sneddon 1955), so that the values of the components
of the displacement vector can be calculated at every point of the same solid. The com-
ponents of the stress tensor can be calculated in the same way..

Putting §, = 0 in equations (16-5), (16-8) and (16-9) we obtain

- 0, o= PEE 0,150, o= 10,051

4pp?r 4pf?
(16-10)

as the solution of the corresponding statical problem. Intheequations (16:10) r = /(x2+4y?).
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GENERATION OF WAVES IN SOLIDS 603

17. THE EFFECT OF A CIRCULAR DISK OF PRESSURE MOVING WITH
UNIFORM VELOCITY IN THE DIRECTION IN WHICH IT ACTS

We shall now consider the case of a uniform pressure P exerted normally over a disk of
radius ¢ which is moving with uniform velocity v in the direction of the z-axis. The solution
of this problem could be obtained by the method of § 14 but, since there is axial symmetry
in this case, it is more suitable to make use of the general solution obtained in § 6. In the
notation of that section,

;o {f«xz——ﬂm (0=r<a),
0 (r>a),
Pa

where #, = v/¢;, and so Z= 7 J1(a) d(w+5,0). (17-1)

When this expression for Z is substituted into equation (6:13) and the elementary integra-
tion with respect to & performed we find that the component of the displacement vector in
the r-direction is

_ Pa(pr—1) it exp {—i(z—u)}d¢ |
27,”’60 f §J,(éa) J, (&r) dgf Era—p gz}{§2+(l_ %) gz} (17-2)

The integration with respect to { may be performed as a result of a contour integration to
yield the result

— 2/4/5’2f (ga) Jy (g")‘{ v,f—e " dE, (17-3)
‘where Y3 .= (z_ ;lt)z (17-4)

By a similar procedure we can show that the z-component of displacement is given by

2ﬂﬂ2f (§a) Jo(&r) (1 —gDrenf— (1—pD)FenEdE (17-5)
and that the components of the stress tensor are determined by the equations
ooy, == [ ea) Ty e, (17-6)

0. = g7 | 10 Iotn) s =LA e, (17-7)

o, =8 [T i(ea) oo [ers— 2 Mo e e

B[P LT (eori_engyar, 119
=7 | e e [T e -y rend e (17:9)

The integrals occurring on the right-hand side of these equations are all integrals of the
type (16-6) with y,, 7, replacing z. They may therefore be evaluated by the methods of the
74-3
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paper cited above (Eason et al. 1955). If the tables provided in that paper are to be used
for the calculation of the components of stress (or displacement) at a point then it will
usually be found necessary to interpolate between the tabulated values.

The tables may be used directly in the case of very small velocities v. If v<<¢, then it is
readily shown that, if we neglect terms of order f4, the components of stress may be calculated
from the equations

0,0yt o, =— (3ﬁ22ﬂ2) {I(1,0; 0)+ A2 [1(1, 0; 0) —3zI(1,0; )]}, (17-10)
—-——272{/5’21(1 05 0)+(p*—1) zI(1,0; 1)
+Bi[F%1(1,0; 0) + (344 —262—3) 2I(1, 0; 1) —z(8*—1) 22(1, 0; 2)]},
(17-11)

0, = =g (B=2) 11,05 0) — (F=1) 21(1, 05 )+ (- 1) 211,13 0
A (F—2) 101,05 0) —4(36*+26— 1) 21(1, 05 1) + (B*—1) 2I(1, 05 2)

020,10 -2 -0 10,150, (1712)

1 = = (L, 15 0+ (= 1) 21(1, 15 1) - A THF—3) I(1, 15 0)
—1(38*—5) 2I(1,1; 1) +}(F*—1) 21(1,1; 2)T}, (17-13)
where the integral I(m, n; p) is defined by equation (16-6).
The solution of the problem of the point force of magnitude /' moving uniformly in the

direction in which it acts may be deduced from equations (17-3) to (17-9) by putting
P = F/mna? in these expressions and letting a— 0. If we make use of the fact that

lim Jl(ga) — _%_g,
a>0 @

we obtain the equations

0’,.-}—0‘0—}—0'2_ (ﬂ2(1 4)/5712;;] 5‘] gr C ‘yﬁdg’

0. = gaa [ £0len) fere = UMD v,

0, =g | £o&0) e~ =300 e g

e AT T

e = s o 610 [0 e =gyt eond e

for the determination of the components of the stress tensor.
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GENERATION OF WAVES IN SOLIDS ‘ 605
‘The values of these integrals are known (Watson 1944, p. 416) and give the results:
_(3f2—4) (z—w) F

0, +0p+0, = R ) (17-14)

v, — (zz—nfsfg)F {1;3/?%_1—/?2;%/9%}, (17-15)

v — “(22—,,1;;2)F{1}§%+r222“1}%ﬂ§'r2}!21}’ (17-16)

(TS R | —

where we have put R} , = (z—vt)2 4 (1—p2 ,) 12 : (17-18)

(®) (©
Ficure 9. The variation of the maximum shearing stress © produced in a solid with Poisson ratio }
by a point force of magnitude F moving in the direction in which it acts with uniform velocity v.
The numbers attached to the curves give the values of the dimensionless quantity #vL?/F,
where L is a characteristic length. Curves () correspond to v = 0, (§) to v = 0-10¢;, and (¢) to
v = 0-52¢,.
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From these expressions it is a simple matter to calculate the maximum shearing stress =
at the points with cylindrical co-ordinates 7, z at any time £ The locus of points for which
7 = constant will be a surface of revolution which moves in the direction of the axis of sym-
metry. The isochromatic lines formed by the intersection of these surfaces with a plane
@ = constant are shown in figure 9 for three values of the velocity v: (a) statical case, v = 0,
() v =1010c,, (¢) v = 0-52¢,. In all three cases it is assumed that the Poisson ratio of the
elastic material is 0-25, i.e. that A = . In the case v = 0-10¢; we see that the isochromatic
lines are almost the same as those in the statical case, showing that quite a high velocity
must be attained by the moving force before an appremable change is observed in the
stress pattern.

18. THE STRESSES PRODUCED BY A PERIODIC POINT FORCE

We shall now consider the distribution of stress produced by a point force of maximum
magnitude ¥, pointing in the z-direction, and varying harmonically with the time. If we
take cylindrical co-ordinates 7, z with origin at the point of application of the force then, in
the notation of § 6, we have 7 F .02 8(r)

Cow XN (g pe), (181)
- F
so that Z= —2;'53(0)+q). (18-2)

If we substitute from equation (18-2) into equations (6-13) and (6-14) and perform the
integration with respect to w, which is immediate, we find that the components of the
displacement vector may be written in the form

471;;/;2 23,.az{ (bg) —1(q)}, (18-3)

— g (PRI + 53 U0 ~ 1)), (18-4)

where we have adopted the notation
R CL I
The {-integration in I(q) may be effected by means of the calculus of residues and the
resulting é-integration by means of a well-known result in the theory of Bessel functions
(Watson 1944, p. 416). We find finally that
e~ ig(r2+29}
I(q) = JEF2) |

When we insert the value (18-5) for I(¢) into equations (18-3) and (18-4) we find that the

components of the displacement vector for this problem take the forms

(18:5)

igr 3 2 .
_rzeY F{R5 (e~ihaR _ e~iaR) +E%g(ﬂe—iﬂqR_e—iqR> _%3 (B2 e—iﬁqR__e—iqR)}’ (18-6)

~ Amprg
eiar ¢ 132 iﬂqR+(2z2_r2) (c—iﬂq.R_e—iqR) n (222_7'2) iq (/)’e‘iﬂqR—-e”iqR
47r,u/$’2 ‘ R E R :
29% | o ~ifqR _ a~iqR . ’
_F(ﬁ e~1haR _e-ia )}, | (18-7)

where R? = r2+4 22, :
The stress tensor may now be calculated by making use of equations (6-1).


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

GENERATION OF WAVES IN SOLIDS 607

19. THE EFFECT OF AN IMPULSIVE POINT FORCE

Finally, we consider the effect of an infinite elastic medium of the application at the origin
of co-ordinates of an impulsive force, of total impulse Z, in the z-direction. In the notation

of § 6 we have 8 (0 d(z) d(r) _

Ic/‘)r(?(r) 5(2) 8(r), (191)

2mr
and we can derive the solutlon in this case from that of § 18 by noting that

Fé(z)8(r) [ iora. 8(z) 8(r)

o 2mr f_meq dq—— p ( ) 2mr "
Hence the solution in this case is obtained from equations (18-6) and (18-7) by taking
F = I¢,/(27) and integrating with respect to ¢ from —oo to co. We therefore find that

=<} igr . 2
= 8{;:21/:22_{ Sq_;_{ 5 (e~1PaR — e~1aR) 1 %g (fe1PaR — g-1dR) —1%5 (B2 e—iﬂqR__e_iqR)} dg,
| (19-2)
Ie L T 222 —1? . .
w= 8772/; 2f ra {ﬂR e+ (—‘E—ss) (e~ihaR — g~idR)
2__
+ g (peipn—coiom) —ZL (e-ioon—eion) dg. - (10-9)

It is readily seen that these integrals contain discontinuities in the shape of Dirac delta
functions at the points 7 = R, 7 = fR. In other words, these integrals represent two circular
waves of discontinuity moving out from the origin with the velocities ¢;, ¢, of the P- and
S-waves.

One of us (G. E.) is indebted to the Department of Scientific and Industrial Research for
the award of a maintenance grant during the period in which the work described in this
paper was done.
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